Table of contents

7.100 System description
7.105 Medium pipe
7.106 Heat insulation, casing pipe, monitoring wires
7.210 Heat loss, insulation thickness 1
7.211 Heat loss, insulation thickness 2
7.212 Heat loss, insulation thickness 3
7.300
7.300 District heating pipe - DUO
7.304 Elbow pipe
7.305 Bend, with equal limbs, 90°
7.307 Bend, with equal limbs, 45°
$7.312 \quad$ T-piece, 90°
$7.316 \quad \mathrm{Y}$-pipe, type G ; straight, insulation thickness 1
$7.317 \quad$ Y-pipe, type G; straight, insulation thickness 2
$7.318 \quad \mathrm{Y}$-pipe, type G ; straight, insulation thickness 3
$7.319 \quad$ Y-pipe, type W; angled, insulation thickness 1
$7.320 \quad$ Y-pipe, type W ; angled, insulation thickness 2
$7.321 \quad Y$-pipe, type W; angled, insulation thickness 3
7.325 Fixed point
7.327 Vent
$7.330 \quad$ Ball valve
$7.340 \quad$ Sleeve joint: Shrink sleeve, non-cross-linked/cross-linked
7.342 Sleeve joint: Reduction sleeves, fitting sleeves and shrink-on end sleeves
7.345 Brugg VISUCON
7.355 Wall sealing ring, pipe warning tape
7.356 Shrink-on closure/end cap
7.357 Rigid foam bar
7.360 Ring seal
7.365 Expansion pad
7.410 Assembly foam

System description

1. General

PREMANT is the registered name for a pre-insulated plastic casing pipe system used to transport district heat, and PREMANT DUO is a special version of this system. It is a pipe system for direct installation in the ground, without channels.

PREMANT DUO district heating pipe is available with a medium pipe made of welded or seamless steel, as specified by the customer. It is suitable to transport heating water, domestic hot water, water/glycol mixtures and other fluids. Due to the connected pipes and the limited maximum temperature, the use of this system for steam or condensate is restricted.

Heat insulation for PREMANT DUO district heating pipe is provided by a rigid polyurethane foam that can withstand temperatures of up to $144^{\circ} \mathrm{C}$. A PE-HD casing pipe provides external protection. All three components form one fixed unit, so this pipe system is a member of the composite pipe family.

PREMANT DUO district heating pipe is available in two categories of insulation thickness. Depending on the dimensions, it can be supplied in lengths of $6 \mathrm{~m}, 12 \mathrm{~m}$ and (16 m). The construction units and all the relevant preformed parts such as bends, T-pieces and fixed points, etc., are prefabricated in the factory. The result is a modular system that is correspondingly simple to plan and install.

All the components are connected together on site with circumferential seams. Supplementary insulation of the weld seam and the weld-on ends is provided by means of joint sleeves. The supplementary insulation work is usually carried out by BRUGG / GERMAN PIPE itself or by qualified specialist companies on our behalf. During the planning phase, we offer support based on our system experience to system users who request this.

PREMANT DUO district heating pipe, and the preformed parts and fittings, are manufactured according to the latest standards (EN 15698, EN 448 and EN 488).

Important note on statics and stability:

PREMANT DUO district heating pipe is designed for a temperature difference of 100 Kelvin between the flow and the return. When planning double pipe systems, it must be ensured that this value is not exceeded. In particular, the stated value must not be exceeded when starting up plants that have been cooled down.

In order to compensate for the difference in expansion between the flow and return pipes, both pipes must be permanently connected to each other. This is especially important:

- on free pipe ends in buildings, shafts and other structures
- on free pipe ends in end sleeves
- in/ahead of bends, branches, reductions, drainers, vents and
- in/ahead of shut-offs.

With PREMANT DUO district heating pipes, these fixing plates are installed in the factory on all DUO preformed parts and fittings. No further joints to absorb forces are required in straight sections of pipe between two bends. For reasons related to production, welded spacers are used in pipe rods, but these spacers do not perform any static functions.

When installing PREMANT DUO pipes, fixing plates must be installed on site in the following situations:

- at the end of house lead-ins
- on all ends of fitting bends and branches
- on the larger side of reduction pieces (except for pre-insulated reduction pieces)

Please contact your BRUGG partner for information on design and execution.
All the illustrations are schematic representations, and they do not correspond to the original components in every detail.

2. Range of applications

Max. continuous operating temperature
$\mathrm{T}_{\text {Bmax }}: 130^{\circ} \mathrm{C}$
Max. temperature difference
between flow and return
$t_{\text {Bmax }}: 100 \mathrm{~K}$
Max. permitted operating pressure
p: 25 bar

System description

1. Medium pipe

Bars: steel pipes with longitudinal or helical seam welds
Quality: \quad P235TR1 or P235GH as per (EN 10220/EN 10217-1) or EN 10217-2
Standard: EN 15698-1
Test certificate: EN 10204-3.1
Welding bevel: \quad From wall thickness $>3.2 \mathrm{~mm}$, as per DIN 2559-1 codes 21 and 22
Preformed parts: \quad T-pieces are flared, or are produced with a welded T-piece as per EN 10253 (formerly DIN 2615); material as appropriate to the straight welded pipes.
Quality: \quad P235TR1 or P235GH as per EN 10220/ EN 10217
Standard: EN 448
Factory certificate: EN 10204-2.2
Test certificate: EN 10204-3.1
Welding bevel: \quad From wall thickness $>3.2 \mathrm{~mm}$, as per DIN 2559-1, codes 21 and 22
Bends are made from cold-bent (seamless or welded) steel pipes, or with welded bends as per EN 10253 (formerly DIN 2605).
Quality: \quad P235TR1 or P235GH as per EN 10220/ EN 10217
Standard: EN 448
Factory certificate: EN 10204-2.2
Acceptance test certificate: EN 10204-3.1
Welding bevel: \quad From wall thickness > 3.2 mm , as per DIN 2559-1, codes 21 and 22

Note:

To ensure a long service life for the PREMANT plastic jacket pipe system, it is important to observe the correct heating water quality. The requirements of VDI 2035 (standard of the Association of German Engineers), AGFW FW 510 (worksheet of the German District Heating Association) and European standard EN 12953-10 must be complied with, in particular with respect to preventing magnetite (iron(II,III) oxide) and scale formation.
Before commissioning, a newly installed heat distribution network should be run without a heat exchanger, if possible, and the particulate matter should be removed using a suitable filter system. If possible, this procedure should also be repeated each time the network is extended or repairs are made.

System description

2. Thermal insulation

Material: Polyurethane foam (pentane-blown), manufactured from 3 components:
polyol, isocyanate and cyclopentane
High-pressure plants are used for mixing and metering.

PUR insulation	Reference temperature ${ }^{\circ} \mathrm{C}$	PREMANT value	Test standard
Pressure resistance	-	$\geq 0.3 \mathrm{MPa}$	EN 253
Thermal conductivity	50	$\leq 0.0260 \mathrm{~W} / \mathrm{mK}$	DIN 52612
Percentage of closed cells	-	$\geq 96 \%$	
Water absorption after 24 hours	-	$\leq 10 \%$	

2.1 Supplementary insulation

Standard:
EN 489
Execution:

- Executed by trained installation staff
- Polyurethane foam is used to foam and seal the sleeve joints
- Sealing with shrink-on sleeve or electro-welding joint
- Connecting the monitoring wires
- Installing the expansion pads, consisting of an elastic foam material which is resistant to ageing

3. Casing pipe

Quality: PE-HD, GM 5010 T3 or equivalent
Standard: EN 15698-1
Factory certificate:
EN 10204-2.2

Dimensions of PE-HD casing pipes Outer Ø	Pipe $\mathbf{m m}$	Preformed parts $\mathbf{m m}$
125	3.0	4.0
140	3.0	4.0
160	3.0	4.0
180	3.0	4.0
200	3.2	4.0
225	3.5	4.0
250	3.6	5.0
280	4.4	5.0
315	4.5	6.3

Dimensions of PE-HD casing pipes Pipe/Preformed parts Outer \varnothing $\mathbf{m m}$	mm
355	5.1
400	5.3
450	5.6
500	6.3
560	7.0
630	7.6
670	8.0

4. Monitoring wires

Brandes system: $1 \times \mathrm{CrNi}$, red, insulated and perforated, $\varnothing 0.8 \mathrm{~mm} / 0.5 \mathrm{~mm}^{2}$
$1 \times \mathrm{Cu}$, green, insulated, $\varnothing 1.0 \mathrm{~mm} / 0.8 \mathrm{~mm}^{2}$
Nordic system: $\quad 1 \times \mathrm{Cu}$, bare: $1.5 \mathrm{~mm}^{2}$
$1 \times \mathrm{Cu}$, tinned: $1.5 \mathrm{~mm}^{2}$
Task: Identification and location of moisture by means of resistance or pulse measurements

Heat loss

Insulation thickness 1

Heat loss q [W/m] for VL and RL together										
PREMANT DUO	U-value W/mK	Average operating temperature $\mathrm{TB}\left[{ }^{\circ} \mathrm{C}\right]$								
		$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$	$110{ }^{\circ} \mathrm{C}$	$120{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C}$
26.9/26.9-125	0.174	7.0	8.7	10.5	12.2	13.9	15.7	17.4	19.2	20.9
33.7/33.7-140	0.195	7.8	9.7	11.7	13.6	15.6	17.5	19.5	21.4	23.3
42.4/42.4-160	0.216	8.6	10.8	12.9	15.1	17.2	19.4	21.6	23.7	25.9
48.3/ 48.3-160	0.263	10.5	13.2	15.8	18.4	21.1	23.7	26.3	29.0	31.6
60.3/60.3-200	0.254	10.2	12.7	15.2	17.8	20.3	22.8	25.4	27.9	30.5
76.1/76.1-225	0.312	12.5	15.6	18.7	21.8	24.9	28.1	31.2	34.3	37.4
88.9/88.9-250	0.363	14.5	18.1	21.8	25.4	29.0	32.6	36.3	39.9	43.5
114.3/114.3-315	0.362	14.6	18.3	21.9	25.6	29.2	32.9	36.5	40.2	43.8
139.7/139.7-400	0.331	13.4	16.7	20.1	23.4	26.8	30.1	33.5	36.8	40.2
168.3/168.3-450	0.413	16.6	20.8	25.0	29.1	33.3	37.4	41.6	45.7	49.9
219.3/219.3-560	0.473	18.9	23.6	28.3	33.0	37.7	42.4	47.1	51.8	56.6

Caution: In contrast to the single pipes heat losses the losses for both pipes listed together here.

Type of installation:
Ground temperature:
Coverage height:
Soil conductivity:
Conductivity of PE jacket:
Conductivity of PUR foam:

1-pipe, laid in the ground
$\mathrm{T}_{\mathrm{E}}=10^{\circ} \mathrm{C}$
$\mathrm{H}=0.8 \mathrm{~m}$
$\lambda_{\mathrm{E}}=1.2 \mathrm{~W} / \mathrm{mK}$
λ PE $=0.4 \mathrm{~W} / \mathrm{mK}$
λ PUR $=0.0260 \mathrm{~W} / \mathrm{mK}$

Heat loss

Insulation thickness 2

Heat loss q [W/m] for VL and RL together										
PREMANT DUO	U -value W/mK	Average operating temperature $\mathrm{TB}\left[^{\circ} \mathrm{C}\right.$]								
		$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$	$110{ }^{\circ} \mathrm{C}$	$120{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C}$
26.9/26.9-140	0.154	6.1	7.7	9.2	10.8	12.3	13.8	15.4	16.9	18.4
33.7/33.7-160	0.165	6.6	8.3	9.9	11.6	13.2	14.9	16.5	18.2	19.8
42.4/ 42.4-180	0.184	7.3	9.2	11.0	12.9	14.7	16.5	18.4	20.2	22.0
48.3/ 48.3-180	0.216	8.6	10.8	12.9	15.1	17.3	19.4	21.6	23.7	25.9
60.3/60.3-225	0.211	8.4	10.5	12.6	14.8	16.9	19.0	21.1	23.2	25.3
76.1/76.1-250	0.253	10.1	12.6	15.2	17.7	20.2	22.8	25.3	27.8	30.3
88.9/88.9-280	0.278	11.1	13.9	16.7	19.5	22.2	25.0	27.8	30.6	33.4
114.3/114.3-355	0.275	11.1	13.8	16.6	19.4	22.1	24.9	27.7	30.4	33.2
139.7/139.7-450	0.258	10.4	13.0	15.5	18.1	20.7	23.3	25.9	28.5	31.1
168.3/168.3-500	0.310	12.4	15.5	18.7	21.8	24.9	28.0	31.1	34.2	37.3
219.3/219.3-630	0.328	13.0	16.3	19.6	22.8	26.1	29.3	32.6	35.8	39.1

Caution: In contrast to the single pipes heat losses the losses for both pipes listed together here.

Type of installation:
Ground temperature:
Coverage height:
Soil conductivity:
Conductivity of PE jacket:
Conductivity of PUR foam:

1-pipe, laid in the ground
$\mathrm{T}_{\mathrm{E}}=10^{\circ} \mathrm{C}$
$\mathrm{H}=0.8 \mathrm{~m}$
$\lambda_{\mathrm{E}} \quad=1.2 \mathrm{~W} / \mathrm{mK}$
λ PE $=0.4 \mathrm{~W} / \mathrm{mK}$
λ PUR $=0.0260 \mathrm{~W} / \mathrm{mK}$

Heat loss

Insulation thickness 3

Heat loss q [W/m] for VL and RL together										
PREMANT DUO	U-value W/mK	Average operating temperature $\mathrm{TB}\left[{ }^{\circ} \mathrm{C}\right]$								
		$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$110{ }^{\circ} \mathrm{C}$	$120{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C}$
26.9/26.9-140	0.135	5.4	6.8	8.1	9.5	10.8	12.2	13.5	14.9	16.2
33.7/33.7-160	0.147	5.9	7.4	8.8	10.3	11.8	13.2	14.7	16.2	17.6
42.4/ 42.4-180	0.163	6.5	8.2	9.8	11.4	13.0	14.7	16.3	17.9	19.6
48.3/48.3-180	0.187	7.5	9.4	11.2	13.1	15.0	16.8	18.7	20.6	22.4
60.3/60.3-225	0.184	7.4	9.2	11.0	12.9	14.7	16.6	18.4	20.2	22.1
76.1/76.1-250	0.212	8.5	10.6	12.7	14.8	17.0	19.1	21.2	23.3	25.4
88.9/88.9-280	0.226	9.0	11.3	13.6	15.8	18.1	20.3	22.6	24.9	27.1
114.3/114.3-355	0.224	9.0	11.2	13.4	15.7	17.9	20.2	22.4	24.6	26.9
139.7/139.7-450	0.218	8.7	10.9	13.1	15.3	17.4	19.6	21.8	24.0	26.2
168.3/168.3-500	0.248	9.9	12.4	14.9	17.4	19.8	22.3	24.8	27.3	29.8
219.3/219.3-630	0.257	10.3	12.9	15.4	18.0	20.6	23.1	25.7	28.3	30.8

Caution: In contrast to the single pipes heat losses the losses for both pipes listed together here.

Type of installation:
Ground temperature:
Coverage height:
Soil conductivity:
Conductivity of PE jacket:
Conductivity of PUR foam:

1-pipe, laid in the ground
$\mathrm{T}_{\mathrm{E}}=10^{\circ} \mathrm{C}$
$\mathrm{H}=0.8 \mathrm{~m}$
$\lambda_{\mathrm{E}} \quad=1.2 \mathrm{~W} / \mathrm{mK}$
λ PE $=0.4 \mathrm{~W} / \mathrm{mK}$
λ PUR $=0.0260 \mathrm{~W} / \mathrm{mK}$

District heating pipe - DUO

Medium pipes, pre-insulated in the factory, with plastic casing pipe and 200 mm free pipe ends.
Key features of double pipes are: reduced heat loss, less outlay on underground construction work and faster completion times than single pipes. The temperature difference between the medium pipes causes stresses within the system. This results in additional static requirements which must be considered during installation.

Nominal width	Steel pipe d	Wall thickness Distance			PE casing pipe						delivery lengths			Volume Inner pipe
		s	x		D		D		D		6 m	12 m	16 m	
					DS1		DS2		DS3					
DN	mm	mm	mm		mm	kg/m	mm	kg/m	mm	kg/m				$1 / \mathrm{m}$
20	26.9	2.6	19		125	4.9	140	5.3	160	5.7	-			2×0.37
25	33.7	2.6	19		140	6.1	160	6.6	180	7.1	-			2×0.64
32	42.4	2.6	19		160	7.6	180	8.2	200	8.8	\bullet	\bullet		2×1.02
40	48.3	2.6	19		160	8.3	180	8.9	200	9.5	-	-		2×1.38
50	60.3	2.9	20		200	11.8	225	12.6	250	13.7	\bullet	-		2×2.28
65	76.1	2.9	20		225	14.8	250	15.7	280	17.5	-	\bullet		2×3.82
80	88.9	3.2	25		250	18.5	280	19.7	315	22.0	-	-		2×5.35
100	114.3	3.6	25		315	27.5	355	29.5	400	32.8	-	-	-	2×9.01
125	139.7	3.6	30		400	36.6	450	39.7	500	44.4	\bullet	-	\bullet	2×13.8
150	168.3	4.0	40		450	47.3	500	50.7	560	57.2	-	-	-	2×20.2
200	219.1	4.5	45		560	70.3	630	76.2	710	86.9	-	\bullet	-	2×34.7

$x=$ clear distance between medium pipes

Elbow pipe

Elbow pipes are plastic casing pipes made to customer specifications and pre-insulated at the factory. Elbow pipes are produced as curved plastic casing pipes with a large radius and serve to optimise pipe routing when the direction changes.
Elbow pipes behave in the same way as straight pipes; in other words, heat expansion does not cause any bending moment. The deflection angle "a" of the pipe routing or the bend radius "R" must be known in order to produce elbow pipes. All elbow pipes have straight ends between 1.2 and 2.0 m due to machine-based production.

The PUR foam is subject to lateral pressure as a consequence of heat expansion and the curve of the pipe. The magnitude of this pressure must not exceed the permissible force of 0.15 MPa . The outcome of this is a maximum permissible deflection angle "a" or a minimum bend radius " R ".

The permissible values are contained in the following table.

Deflection angle for elbow pipes à 12 m

Nominal width DN	Deflection angle minimum a [${ }^{\circ}$]	maximal a	min.perm. radius R [m]
32	10	33	20.8
40	8	31	22.2
50	6	29	23.7
65	5	24	28.6
80	3	20	34.4
100	3	18	38.2
125	3	16	43.0
150	3	11	62.5
200	on request		

Bend, with equal limbs, 90°

Design versions

Two versions are offered for double pipe bends. When installing normal pipelines,
"horizontal" bends are used whereas for house lead-ins and vertical projections,
"vertical" bends are required.

The sketches on the right illustrate the design versions.

Horizontal

Nominal	Diameter	Limb length	PE casing pipe		
width	\mathbf{d}	L	D	D	D
			DS1	DS2	DS3
DN	$\mathbf{m m}$	1000	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{m m}$
20	26.9	1000	125	140	160
25	33.7	1000	140	160	180
32	42.4	1000	160	180	200
40	48.3	1000	160	180	200
50	60.3	1000	200	225	250
65	76.1	1000	225	250	280
80	88.9	1000	250	280	315
100	114.3	1000	315	355	400
125	169.7	1000	400	450	500
150	219.1	1300	450	500	560
200			560	630	710

Bend, with equal limbs, 45°

Nominal	Diameter	Limb length	PE casing pipe		
width	\mathbf{d}	L	D	D	D
			DS1	DS2	DS3
DN	$\mathbf{m m}$				
20	26.9	1000	125	140	160
25	33.7	1000	140	160	180
32	42.4	1000	160	180	200
40	48.3	1000	160	180	200
50	60.3	1000	200	225	250
65	76.1	1000	225	250	280
80	88.9	1000	315	380	315
100	114.3	1000	400	450	500
125	139.7	1300	450	500	560
150	168.3		560	630	710
200	219.1				

T-piece, 90°

Y-pipe, type G

straight, insulation thickness 1

Y-pipes are used to produce a transition from conventional installation with two single pipes to the space-saving PREMANT DUO system.

The upper pipe (preferably the return) runs straight through the Y-pipe, whereas the lower pipe is angled outwards at 90°. With type G, the double and single pipes have parallel axes. Fixing plates are positioned on the side of the double pipe connection.

Design versions

Two different design versions are offered for Y-pipes. The relevant type must be stated when ordering. The arrows in the sketch show the direction of flow in the forward flow pipe.

A reducing sleeve must be used on single pipe side, to connect the pipe that passes straight through.

Nominal width	Diameter	Overall (installed) length	Junction	Distance	PE casing pipe	
DN	\mathbf{d}	$\mathbf{L 1}$	$\mathbf{L 2}$	\mathbf{a}	D1	D2
20	26.9	1000	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{m m}$
25	33.7	1000	450	250	125	90
32	42.4	1000	460	250	140	90
40	48.3	1200	480	300	160	110
50	60.3	1200	480	300	160	110
65	76.1	1200	500	300	200	125
80	88.9	1400	510	350	225	140
100	114.3	1400	510	400	250	160
125	139.7	1400	510	450	315	200
150	168.3	1500	530	500	400	225
200	219.1	1800	570	550	450	250

Y-pipe, type G

straight, insulation thickness 2

Y-pipes are used to produce a transition from conventional installation with two single pipes to the space-saving PREMANT DUO system.

The upper pipe (preferably the return) runs straight through the Y-pipe, whereas the lower pipe is angled outwards at 90°. With type G , the double and single pipes have parallel axes. Fixing plates are positioned on the double pipe connection side.

Design versions

Two different design versions are offered for Y-pipes. The relevant type must be stated when ordering. The arrows in the sketch show the direction of flow in the forward flow pipe.

A reducing sleeve must be used on single pipe side, to connect the pipe that passes straight through.

Nominal width	Diameter	Overall (installed) length	Junction	Distance	PE casing pipe	
	d	L1	$\mathbf{L 2}$	\mathbf{a}	D1	D2
DN	$\mathbf{m m}$					
20	26.9	1000	450	250	140	110
25	33.7	1000	460	250	160	110
32	42.4	1000	480	300	180	125
40	48.3	1200	480	300	180	125
50	60.3	1200	500	300	225	140
65	76.1	1200	510	350	250	160
80	88.9	1400	510	400	280	180
100	114.3	1400	510	450	355	225
125	139.7	1400	530	500	450	250
150	168.3	1500	570	550	500	280
200	219.1	1800	700	660	630	355

Y-pipe, type G

straight, insulation thickness 3

Y-pipes are used to produce a transition from conventional installation with two single pipes to the space-saving PREMANT DUO system.

The upper pipe (preferably the return) runs straight through the Y-pipe, whereas the lower pipe is angled outwards at 90°. With type G, the double and single pipes have parallel axes. Fixing plates are positioned on the double pipe connection side.

Design versions

Two different design versions are offered for Y-pipes. The relevant type must be stated when ordering. The arrows in the sketch show the direction of flow in the forward flow pipe.

A reducing sleeve must be used on single pipe side, to connect the pipe that passes straight through.

Nominal width	Diameter	Overall (installed) length	Junction	Distance	PE casing pipe	
	d	L1	$\mathbf{L 2}$	\mathbf{a}	D1	D2
DN	$\mathbf{m m}$					
20	26.9	1000	450	270	160	125
25	33.7	1000	460	280	180	125
32	42.4	1000	480	300	200	140
40	48.3	1200	480	300	200	140
50	60.3	1200	500	330	250	160
65	76.1	1200	510	350	280	180
80	88.9	1400	510	400	315	200
100	114.3	1400	510	460	400	250
125	139.7	1400	530	540	500	280
150	168.3	1500	570	580	500	315
200	219.1	1800	700	740	710	400

Y-pipe, type W

angled, insulation thickness 1

Y-pipes are used to make a transition from a conventional installation with two single pipes to the space-saving PREMANT DUO system.

With type W, the double and single pipes run at an angle of 90°. Fixing plates are positioned on the double pipe connection side.

Design versions

Two different design versions are offered for Y-pipes. The relevant type must be stated when ordering. The arrows in the sketch show the direction of flow in the forward flow pipe.

Nominal width	Diameter	Overall (installed) length	Junction	Distance	PE casing pipe	
	\mathbf{d}	\mathbf{L}	\mathbf{b}	a	D1	D2
DN	$\mathbf{m m}$					
20	26.9	1000	500	320	125	90
25	33.7	1000	500	320	140	90
32	42.4	1000	500	340	160	110
40	48.3	1000	500	340	160	110
50	60.3	1000	550	355	200	125
65	76.1	1100	550	420	225	140
80	88.9	1200	600	440	250	160
100	114.3	1350	600	480	315	200
125	139.7	1450	650	505	400	225
150	168.3	1600	700	530	450	250
200	219.1	2000	750	700	560	315

Y-pipe, type W

angled, insulation thickness 2

Y-pipes are used to make a transition from a conventional installation with two single pipes to the space-saving PREMANT DUO system.

With type W, the double and single pipes run at an angle of 90°. Fixing plates are positioned on the double pipe connection side.

Design versions

Two different design versions are offered for Y-pipes. The relevant type must be stated when ordering. The arrows in the sketch show the direction of flow in the forward flow pipe.

Nominal width	Diameter	Overall (installed) length	Junction	Distance	PE casing pipe	
	d	\mathbf{L}	\mathbf{b}	\mathbf{a}	D1	D2
DN	$\mathbf{m m}$					
20	26.9	1000	500	320	140	110
25	33.7	1000	500	320	160	110
32	42.4	1000	500	340	180	125
40	48.3	1000	500	340	180	125
50	60.3	1000	550	355	225	140
65	76.1	1100	550	420	250	160
80	88.9	1200	550	440	280	180
100	114.3	1350	600	480	355	225
125	139.7	1450	600	505	450	250
150	168.3	1600	700	530	500	280
200	219.1	2000	750	700	630	355

6.2.2018

Y-pipe, type W

angled, insulation thickness 3

Y-pipes are used to make a transition from a conventional installation with two single pipes to the space-saving PREMANT DUO system.

With type W, the double and single pipes run at an angle of 90°. Fixing plates are positioned on the double pipe connection side.

Design versions

Two different design versions are offered for Y-pipes. The relevant type must be stated when ordering. The arrows in the sketch show the direction of flow in the forward flow pipe.

Nominal width	Diameter	Overall (installed) length	Junction	Distance	PE casing pipe	
	\mathbf{d}	\mathbf{L}	\mathbf{b}	\mathbf{a}	D1	D2
DN	$\mathbf{m m}$					
20	26.9	1000	500	320	160	125
25	33.7	1000	500	320	180	125
32	42.4	1000	500	340	200	140
40	48.3	1000	500	340	200	140
50	60.3	1000	550	355	250	160
65	76.1	1100	550	420	280	180
80	88.9	1200	550	440	315	200
100	114.3	1350	600	480	400	250
125	139.7	1450	600	505	500	280
150	168.3	1600	700	530	560	315
200	219.1	2000	750	700	710	400

6.2.2018

Fixed point

Pre-insulated in the factory, design as per EN 448, steel quality and dimensions of steel pipe and PE outer casing correspond to those of the straight pipe.

The anchor is a square steel plate that is designed according to the load it must take.
The medium pipe and the anchor plate are thermally and electrically separated from each other.

Nominal width	Diameter d	Overall (installed) length L	PE casing pipe		
			D	D	D
			DS1*	DS2	DS3
DN	mm	mm	mm	mm	mm
20	26.9	2000		140	160
25	33.7	2000		160	180
32	42.4	2000		180	200
40	48.3	2000		180	200
50	60.3	2000		225	250
65	76.1	2000		250	280
80	88.9	2000		280	315
100	114.3	2000		355	400
125	139.7	2000		450	500
150	168.3	2000		500	560
200	219.1	2000		630	710

[^0]6.2.2018

Vent

Pre-insulated in the factory, design as per EN 448, produced with a T-piece as per DIN 2615-1.

With inbound and outbound venting ball valves made of stainless steel. A heat-shrunk end cap is used for frontal insulation protection on the vent nozzle. The nozzle height is 600 mm above the top of the base pipe.

The standard design for this vent fitting is as follows:

- non-insulated stainless steel ball valve with inner thread and plug
- reduced through passage
- for key operation

Nominal	Diameter	Overall	Distance	Offset	Height	PE casing pipe			Vent	
width	d	L	a	b	h	D	D	D		D
						DS1	DS2	DS3		
DN	mm	DN	mm							
25	33.7	1200	200	100	600	140	160	180	25	90
32	42.4	1200	200	100	600	160	180	200	25	90
40	48.3	1200	200	100	600	160	180	200	25	90
50	60.3	1200	200	140	600	200	225	250	25	90
65	76.1	1200	200	140	600	225	250	280	25	110
80	88.9	1200	200	140	600	250	280	315	32	110
100	114.3	1400	200	100	600	315	355	400	32	110
125	139.7	1400	200	100	600	400	450	500	40	110
150	168.3	1400	200	100	600	450	500	560	40	110
200	219.1	1400	200	175	600	560	630	710	50	110

Ball valve

Pre-insulated shut-off fittings for direct installation in the ground, design as per EN 488, pre-insulated in the factory, frontal insulation protection on the dome with heat-shrunk end cap, ball valve with fully welded housing, yield strength fitting, version for max. axial stress up to $300 \mathrm{~N} / \mathrm{mm}^{2}$.

Ball valves can be supplied with reduced or full-size through passages. The stem height depends on the desired brand of ball valve. A socket wrench or plug-on gear is used for operation. Fixing plates are installed on both sides of the connection.

Nominal	Diameter	Overall	Junction	Distance	PE casing pipe		
width	\mathbf{d}	\mathbf{L}	\mathbf{a}	\mathbf{b}	\mathbf{D}	\mathbf{D}	D
						DS1	DS2
DS3							
DN	$\mathbf{m m}$						
20	26.9	2000	225	50	125	140	160
25	33.7	2000	225	55	140	160	180
32	42.4	2000	225	65	160	180	200
40	48.3	2000	225	85	160	180	200
50	60.3	2000	225	110	200	225	250
65	76.1	2000	225	145	225	250	280
80	88.9	2100	225	165	250	280	315
100	114.3	2300	225	225	315	355	400
125	139.7	2500	225	275	400	450	500
150	168.3	2800	300	315	450	500	560
200	219.1	not available*					

[^1]
Sleeve joints

Shrink sleeve, non-cross-linked/cross-linked

1. PE shrink sleeve, non-cross-linked

The non-cross-linked shrink sleeve consists of a heat-shrunk PE sleeve pipe and the following accessories:

- Shrink-on collars
- Permanently elastic sealing strip, butyl rubber
- Venting plug
- Welded-in PE plug

The shrink sleeves are pushed onto the casing pipe when the pipe is being laid, before the medium pipe weld seams are made. The connection points are then fitted with additional insulation by trained fitting staff who have been tested as per AGFW Worksheet FW 603.

This produces a watertight, non-positive connection between the casing pipe and the sleeve. The sealing strip and the shrink-on collars are used to double-seal the sleeve joint. Technical requirements as per EN 489, AGFW Worksheet FW401, parts 6, 14, 16 and 17.

Nominal width:	$125 \ldots 710$
Length:	$700,1000,1400 \mathrm{~mm}$

2. Shrink sleeve made of cross-linked PE

The cross-linked shrink sleeve consists of molecular cross-linked polyethylene, so only limited welding is possible. The very high shrinkage capacity of this material, combined with the sealing strip inserted between the casing pipe and the sleeve, produces a very strong nonpositive connection.

Because this type of sleeve can withstand high mechanical loads, it is especially suitable for plastic casing pipe sections that are subject to higher stresses (e.g. frequent load alternation, pipes laid in the groundwater zone).

Sleeve joints

Reduction sleeves, fitting sleeves and shrink-on end sleeves

3. Shrink-on reduction sleeves

For reasons related to statics, shrink-on reduction sleeves to insulate steel reduction joints that are welded in by the pipelayer (provided by the customer or others) are designed to reduce the dimension by a maximum of three steps. Their structure corresponds to that of the non-cross-linked PE shrink sleeve, and they must be pushed onto the outer casing before the medium pipe is welded.

The non-cross-linked reduction shrink sleeve consists of a heat-shrunk PE sleeve pipe and the following accessories:

- Shrink-on collars
- Permanently elastic sealing strip, butyl rubber
- Venting plug
- Welded-in PE plug

Nominal	Reduction joint			Length
D	D	D	D	L
mm	$\mathbf{m m}$	mm	mm	mm
140	125			700
160	140	125		700
180	160	140	125	700
200	180	160	140	900
225	200	180	160	900
250	225	200	180	900
280	250	225	200	900
315	280	250	225	900

4. Fitting sleeve

Fitting sleeves made of non-cross-linked PE are used when lack of space makes it impossible to push the joint sleeves on. The fitting sleeve is separated in the axial direction and it can then be moved into position over the points where the pipes are connected. This separation point is welded to guarantee the tightness of the sleeve.

Nominal width:	$125 \ldots 710$
Length:	$700,1000,1400 \mathrm{~mm}$

5. Shrink-on end sleeve

The shrink-on end sleeve is used to insulate pipe closures in the ground and in buildings or shafts. It has the same structure as a non-cross-linked PE shrink-on sleeve, but is sealed on one side with a PE end cover.

Nominal width:	$125 \ldots 710$
Length with closure	
with cap:	700 mm
with 1x ball valve:	1200 mm

In Switzerland, it is preferable not to use shrinkable end sleeves.

Brugg VISUCON

Brugg VISUCON is a connection technology which is fundamentally different from the processing of other sleeve systems. VISUCON makes possible visual inspection of the polyurethane foam. This means it is not necessary to destroy the sleeve or the foam.

With the VISUCON connection sleeve, the annular space for the external foaming process is not limited by a polyethylene sleeve, but by reusable forming shells. With this technology, the external sealing connection is not made until after the foaming process is complete. The result and quality of the polyurethane foam can be reliably tested for every sleeve.

Sleeve system parts:

- Polyurethane foam, made of liquid components polyol and isocyanate (cf. PRE 7.410)
- Sealing shrink film
- Sealing tape
- VISUCON sleeve bodies made of integrated shrinkable HDPE

A cylindrical VISUCON shell is used for installation, which is then removed after the polyurethane foam hardens. The two sealing systems are then installed. Due to the system design, no foaming holes are necessary, meaning the plug welding process can also be omitted. The VISUCON sleeve body shrinks across its entire length during installation, whereby the sleeve area does not expand. This unchanging pipe diameter can be advantageous during pipe installation in empty tubes or when driving over cable links.

Nominal size:	$160 \ldots . .710 \mathrm{~mm}$
Length:	780 mm

Brugg VISUCON is only available as a straight connection sleeve. Non-integrated shrink sleeves should be used for reducing sockets and stop ends.

Polyurethane half shells

The VISUCON connection sleeve can also be used together with the prefabricated polyurethane half shells. In this case, forming VISUCON shells are not necessary. The remaining installation is identical.

Welding - Foaming - Sealing

Wall sealing ring, pipe warning tape

Wall sealing ring

Data table: sealing ring

D	Da
90	133
110	153
125	168
140	183
160	203
180	223
200	240
225	265
250	290
315	355
355	395
400	440
450	490
500	540
560	600
630	670
710	750

Figures in mm

Pipe warning tape

Material width $\mathbf{m m}$	Language	Print colour
40	German	blue
100	German/English/French/Italian	blue

Pipe warning tape to be laid in the ground.
Standard roll length, 250 m
Installation depth; see sheet PRE 6.500

Shrink-on closure

Shrink-on closure/end cap

PREMANT DUO shrink-on closures protect the PUR insulation on the front of the PREMANT district heating pipes against splashing water in buildings and shafts. The shrink-on closure is not necessarily watertight in contact with water (flooding). The shrink-on closure also stops gas escaping from the PUR insulation at the end of the pipe.

Material:	Important fitting note
Heat-shrunk,	PREMANT DUO shrink-on
cross-linked polyolefin.	closures must be pushed Coated with sealing adhesive
	PREMAN the end of the heating pipe before
	welding the inner pipes, and must be protected against the action of heat during welding.

Allocation of PREMANT DUO dimensions to type of shrink-on closure

Nominal width DN	Insulation thickness, DS1		Insulation thickness, DS2		Insulation thickness, DS3	
	Casing pipe mm	End cap Type	Mantel- rohr mm	End cap Type	Casing pipe mm	End cap Type
20-20	125	2-30	140	2-50	160	2-50
25-25	140	2-30	160	2-60	180	2-60
32-32	160	2-70	180	2-70	200	2-70
40-40	160	2-70	180	2-70	200	2-70
50-50	200	2-90	225	2-90	250	2-110
65-65	225	2-90	250	D-110	280	D-120
80-80	250	D-110	280	D-120	315	D-120
100-100	315	D-120	355	D-130	400	D-130
125-125	400	D-130	450	D-140	500	D-140
150-150	450	D-140	500	D-140	560	D-355
200-200	560	D-355	630	D-355	710	D-355

Rigid foam bar

Rigid foam bars are used as supports for plastic casing pipes in the pipe trench. Rigid foam bars can remain sanded into the pipe trench.

Rigid foam bars are only partially suitable for large pipes. They tend to break under high loads if they are not properly supported. In most cases, the additional outlay for a flat trench floor is not justified. For PREMANT DUO district pipe from DN 100 upwards, GERMAN PIPE recommends sandbags, sand beds or timber strips.

If timber strips are used for alignment, it must be ensured that they are removed again after the welding work is completed, prior to sanding-in. Otherwise, the casing may be damaged due to thermal expansion.

Ring seal

Seal against water (exerting pressure/not exerting pressure) in water-impermeable components

Wall leadthrough with double seal, impermeable to water exerting pressure

1 PREMANT DUO district heating pipe
2 Sealing kit, double seal
3 Liner pipe made of fibre cement or coated core bore

Wall leadthrough,
impermeable to water not exerting pressure

1 PREMANT DUO district heating pipe
2 Sealing kit, single seal
3 Liner pipe made of fibre cement or coated core bore

Casing pipe diameter	Liner pipe
PE	Core bore
Ø R	Ø D
mm	mm
125,140	200
160,180	250
200,225	300
250,280	350
315	400
355	450
400	500
450	600
500	700
560	700
630	800
710	800

Core bores

Perfect bores are required for installation. As hairline cracks may be present in the concrete or could be caused by processing, it is advisable to seal the entire length of the borehole wall with suitable sealant (such as AQUAGARD).

Tightness can only be guaranteed if this recommendation is followed.

Installation / trench infill

To avoid deformations at the sealing point, it is especially important during installation and when filling the trench to ensure that no subsequent sinking of the pipe can occur. We also recommend that the pipe is supported or suspended inside the building. Tightness cannot be guaranteed unless these recommendations are followed.

Expansion pad

Description

In order to absorb expansion movements of the underground pipe system in bends, branches and reduction pieces, expansion pads must be applied to the outer PE casing in these areas. Expansion pads are manufactured from cross-linked closed-cell polyethylene, are permanently elastic, do not decay and are resistant to chemicals. The expansion zone is designed on the basis of pipe statics calculations.

Delivery

The delivery scope for an expansion zone of 1 m comprises 2 pieces of expansion pad strip, length 1000 mm , which are glued onto the outer casing at the 3 o'clock and 9 o'clock positions. Laminate is then wrapped around the entire zone in order to prevent sand or soil particles from penetrating between the expansion pad and the PE casing.

Material: Polyethylene particle foam

Nominal width:	Size I	120 mm
	Size II	240 mm
	Size III	360 mm

Nominal thickness: 40 mm

Properties	Value	Unit
Apparent (bulk) density	32	$\mathrm{Kg} / \mathrm{m}^{3}$
Tensile strength	160	kPa
Compressive stress		
50% deformation at $23^{\circ} \mathrm{C}$	100	kPa
Vibration fatigue test, 80,000 load changes		
\quad - Change in thickness	2,4	$\%$
\quad - Change in hardness number	2,4	$\%$
Absorption of water (volume fraction)		
\quad - after 1d	2,0	$\%$
\quad - after 7d	3,0	$\%$
Thermal conductivity at $10^{\circ} \mathrm{C}$	0,040	$\mathrm{~W} / \mathrm{mK}$

Diameter Outer casing mm	Nominal size		Weight		Volume	
	Name	Existing designation	kg/unit	kg/m	m³/pce	$\mathrm{m}^{3} / \mathrm{m}$
125 to 160	Size 1	I	0.154	0.307	0.0048	0.0096
180 to 280	Size 2	II	0.307	0.614	0.0096	0.0192
315 to 355	Size 3	III	0.461	0.922	0.0144	0.0288
400 to 450	Size 4	II+II	0.614	1.229	0.0192	0.0384
500 to 560	Size 5	II+ III	0.768	1.536	0.0240	0.0480
630	Size 6	III+ III	0.922	1.843	0.0288	0.0576
710	Size 7	III + II+II	1.075	2.151	0.0336	0.0672

Assembly Foam

Characteristics	Value	Unit
Component A	Polyol	
Colour	ocker	
Density	1.04	$\mathrm{~kg} / \mathrm{m}^{3}$
Solubility in water	yes	
Component B	Isocyanat	
Colour	brown	
Density	1.23	$\mathrm{~kg} / \mathrm{m}^{3}$
Solubility in water	no	

Storage

The components of the foam system may only be stored and transported in the original canisters. The canisters have to be stored in a dry environment. They should stay airtight closed and sealed. Direct solar radiation and frost have to be avoided.

Are the foam components stored in a closed room, the room has to be ventilated. The minimum ventilation is an air change twice in 24 h . The temperature ought to be between 10 and $25^{\circ} \mathrm{C}$.

While storing together with other substances, these have to be basically compatible. Furthermore we refer to the "VCI-Konzept zur Zusammenlagerung von Chemikalien" of the "Verband der chemischen Industrie".

PUR-foam-components should not be stored for longer then 6 months.

Storage	Value	Unit
Temperature	$10 \ldots 25$	${ }^{\circ} \mathrm{C}$
Ventilation	twice	each 24 h
Period	<180	days

Disposal

Basically a disposal of the fluent components should be avoided. The disposal of this product hat to occur at all times in compliance with the standards of environmental protection and laws of waste disposal as well as the requirements of the local authorities. It is recommended to clarify the details with the responsible waste management company.

Classification Substance	ADR/RID-class	Water hazard class	Storage class	Waste class EAK Code
Component A (Polyol)	3	1	Class 3	080409
Component B (Isocaynat)	-	1	Class 10	080501

[^0]: * Due to the internal structure of the electrical isolation, DUO fixed points only in DS2 are available. When DU0 fixed points in DS1 systems be installed, so shrink-on sleeves (7.342) are necessary to connect the jacket pipes.

[^1]: * will be integrated into subsequent UNO pipes

